Tuesday, 26 April 2016

IOT ( Internet Of Thing) Part 4

Privacy, autonomy and control

Philip N. Howard, a professor and author, writes that the Internet of Things offers immense potential for empowering citizens, making government transparent, and broadening information access. Howard cautions, however, that privacy threats are enormous, as is the potential for social control and political manipulation.[143]
A research team of the National Science Foundation and University of Arkansas at Little Rock discovered that the privacy of households using smart home devices could be compromised by analyzing network traffic.[144][145]
Peter-Paul Verbeek, a professor of philosophy of technology at the University of Twente, Netherlands, writes that technology already influences our moral decision making, which in turn affects human agency, privacy and autonomy. He cautions against viewing technology merely as a human tool and advocates instead to consider it as an active agent.[146]
Justin Brookman, of the Center for Democracy and Technology, expressed concern regarding the impact of IoT on consumer privacy, saying that "There are some people in the commercial space who say, 'Oh, big data — well, let's collect everything, keep it around forever, we'll pay for somebody to think about security later.' The question is whether we want to have some sort of policy framework in place to limit that."[147]
Tim O'Reilly believes that the way companies sell the IoT devices on consumers are misplaced, disputing the notion that the IoT is about gaining efficiency from putting all kinds of devices online and postulating that "IoT is really about human augmentation. The applications are profoundly different when you have sensors and data driving the decision-making."[148]
Editorials at WIRED have also expressed concern, one stating "What you're about to lose is your privacy. Actually, it's worse than that. You aren't just going to lose your privacy, you're going to have to watch the very concept of privacy be rewritten under your nose."[149]
The American Civil Liberties Union (ACLU) expressed concern regarding the ability of IoT to erode people's control over their own lives. The ACLU wrote that "There's simply no way to forecast how these immense powers – disproportionately accumulating in the hands of corporations seeking financial advantage and governments craving ever more control – will be used. Chances are Big Data and the Internet of Things will make it harder for us to control our own lives, as we grow increasingly transparent to powerful corporations and government institutions that are becoming more opaque to us."[150]
Researchers have identified privacy challenges faced by all stakeholders in IoT domain, from the manufacturers and app developers to the consumers themselves, and examined the responsibility of each party in order to ensure user privacy at all times. Problems highlighted by the report[151] include:
  • User consent – somehow, the report says, users need to be able to give informed consent to data collection. Users, however, have limited time and technical knowledge.
  • Freedom of choice – both privacy protections and underlying standards should promote freedom of choice.
  • Anonymity – IoT platforms pay scant attention to user anonymity when transmitting data, the researchers note. Future platforms could, for example, use TOR or similar technologies so that users can't be too deeply profiled based on the behaviors of their "things".

Security

Concerns have been raised that the Internet of Things is being developed rapidly without appropriate consideration of the profound security challenges involved[152] and the regulatory changes that might be necessary.[153] According to the BI (Business Insider) Intelligence Survey conducted in the last quarter of 2014, 39% of the respondents said that security is the biggest concern in adopting Internet of Things technology.[154] In particular, as the Internet of Things spreads widely, cyber attacks are likely to become an increasingly physical (rather than simply virtual) threat.[155] In a January 2014 article in Forbes, cybersecurity columnist Joseph Steinberg listed many Internet-connected appliances that can already "spy on people in their own homes" including televisions, kitchen appliances,[156] cameras, and thermostats.[157] Computer-controlled devices in automobiles such as brakes, engine, locks, hood and truck releases, horn, heat, and dashboard have been shown to be vulnerable to attackers who have access to the onboard network. In some cases, vehicle computer systems are internet-connected, allowing them to be exploited remotely.[158] By 2008 security researchers had shown the ability to remotely control pacemakers without authority. Later hackers demonstrated remote control of insulin pumps [159] and implantable cardioverter defibrillators.[160] David Poguewrote[161] that some recently published reports about hackers remotely controlling certain functions of automobiles were not as serious as one might otherwise guess because of various mitigating circumstances; such as the bug that allowed the hack having been fixed before the report was published, or that the hack required security researchers having physical access to the car prior to the hack to prepare for it.
The U.S. National Intelligence Council in an unclassified report maintains that it would be hard to deny "access to networks of sensors and remotely-controlled objects by enemies of the United States, criminals, and mischief makers... An open market for aggregated sensor data could serve the interests of commerce and security no less than it helps criminals and spies identify vulnerable targets. Thus, massively parallel sensor fusion may undermine social cohesion, if it proves to be fundamentally incompatible with Fourth-Amendment guarantees against unreasonable search."[162] In general, the intelligence community views Internet of Things as a rich source of data.[163]
As a response to increasing concerns over security, the Internet of Things Security Foundation (IoTSF) was launched on 23 September 2015. IoTSF has a mission to secure the Internet of Things by promoting knowledge and best practice. Its founding board is made from technology providers and telecommunications companies including BT, Vodafone, Imagination Technologies and Pen Test Partners.

Design

Given widespread recognition of the evolving nature of the design and management of the Internet of Things, sustainable and secure deployment of Internet of Things solutions must design for "anarchic scalability."[166] Application of the concept of anarchic scalability can be extended to physical systems (i.e. controlled real-world objects), by virtue of those systems being designed to account for uncertain management futures. This "hard anarchic scalability" thus provides a pathway forward to fully realize the potential of Internet of Things solutions by selectively constraining physical systems to allow for all management regimes without risking physical failure.
Brown University computer scientist Michael Littman has argued that successful execution of the Internet of Things requires consideration of the interface's usability as well as the technology itself. These interfaces need to be not only more user-friendly but also better integrated: "If users need to learn different interfaces for their vacuums, their locks, their sprinklers, their lights, and their coffeemakers, it's tough to say that their lives have been made any easier."[167]

Environmental impact

Also, because the concept of IoT entails adding electronics to mundane devices (for example, simple light switches), and because the major driver for replacement of electronic components is often technological obsolescence rather than actual failure to function, it is reasonable to expect that items that previously were kept in service for many decades would see an accelerated replacement cycle, if they were part of the IoT. For example, a traditional house built with 30 light switches and 30 electrical outlets might stand for 50 years, with all those components still being original at the end of that period. But a modern house built with the same number of switches and outlets set up for IoT might see each switch and outlet replaced at five-year intervals, in order to keep up-to-date with technological changes. This translates into a ten-fold increase in waste requiring disposal.A concern regarding IoT technologies pertains to the environmental impacts of the manufacture, use, and eventual disposal of all these semiconductor-rich devices.[168] Modern electronics are replete with a wide variety of heavy metals and rare-earth metals, as well as highly toxic synthetic chemicals. This makes them extremely difficult to properly recycle. Electronic components are often simply incinerated or dumped in regular landfills, thereby polluting soil, groundwater, surface water, and air. Such contamination also translates into chronic human-health concerns. Furthermore, the environmental cost of mining the rare-earth metals that are integral to modern electronic components continues to grow. With production of electronic equipment growing globally yet little of the metals (from end-of-life equipment) being recovered for reuse, the environmental impacts can be expected to increase.

Intentional bricking of devices

The Electronic Frontier Foundation has raised concerns that companies can use the technologies necessary to support connected devices to intentionally disable or "brick" their customers' devices via a remote software update or by disabling a service necessary to the operation of the device. In one example, home automation devices which were sold with the promise of a "Lifetime Subscription" were rendered useless after Nest Labs acquired Revolv and made the decision to shut down the central servers the Revolv devices had used to operate.[169] As Nest is a company owned by Alphabet (Google's parent company), the EFF argues this sets a "terrible precedent for a company with ambitions to sell self-driving cars, medical devices, and other high-end gadgets that may be essential to a person's livelihood or physical safety."[170]
Owners should be free to point their devices to a different server or collaborate on improved software. But such action violates the United States DMCA section 1201, that only has an exemption for "local use". This forces tinkerers that want to keep using their own equipment into a legal grey area. EFF thinks buyers should refuse electronics and software that prioritize the manufacturer's wishes above their own.

No comments:

Post a Comment